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Matrix representation of the generators of symplectic algebras: 
I. The case of sp(4, R )  
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t Centro de Estudios Nucleares, UNAM, Apdo Postal 70-543, MCxico, DF04510 Mexico 

Instituto de Fisica, UNAM, Apdo Postal 20-364, Mexico, DFOlOOO MCxico 

Received 10 March 1986 

Abstract. Because of their many physical applications, there has been considerable interest 
lately in the basis for irreducible representations (irreps) of symplectic groups and in the 
matrix elements of the generators of these groups with respect to this basis. In the present 
paper we carry out this programme for the irreps in the positive discrete series of sp(4, R )  
by building up this basis from powers of the raising generators applied to the lowest weight 
state. By using the Dyson boson realisation of the generators, their matrix representation 
can be obtained by direct differentiation, while the overlap of the states of the basis can 
be determined with the help of coherent states. The extension of the analysis to symplectic 
groups of arbitrary dimension is straightforward and will be implemented explicitly for 
sp(6, R )  in a later paper. 

1. Introduction and summary 

In the past few years there has been considerable interest in the basis for irreducible 
representations (irreps) of symplectic groups (Deenen and Quesne 1982, 1984a, b, 
Kramer 1982, Kramer et a1 1984, 1985, Rowe et a1 1984, Castafios et a1 1985a, b, 
Moshinsky 1985, H e c k  1985) and the matrix elements of the generators of the groups 
with respect to this basis, particularly because of their applications to collective motions 
in nuclei (Dzublik et a1 1972, Filippov and Ovcharenko 1979, Filippov et af 1980, 
1981, Vanagas 1977, 1980, Rosensteel and Rowe 1980, Park et a1 1984, Draayer et a1 
1984, Moshinsky 1984b, Chac6n et a1 1984, Castahos et a1 1984, Suzuki and Hecht 
1986). The authors and their collaborators have made contributions to this programme 
(Castaiios et a1 1985a, b, 1986, Moshinsky 1985) emphasising the construction of the 
basis in terms of the coordinates or, equivalently, the creation operators associated 
with the many-body systems. A more abstract procedure working in the enveloping 
algebra of the Lie algebra in question is well known (Jacobson 1962) and has been 
applied very explicitly by Gruber and Klymik (1984) for Su(2) and other groups. In 
the present paper we wish to follow this approach for the discussion of the basis of 
irreps, and the matrix elements of the generators with respect to this basis, for the case 
of sp(4, R )  to extend it later to the physically interesting case of sp(6, R ) .  

The analysis in this paper will proceed as follows. In § 2 we will introduce for 
su(2) the concept of coherent states and boson realisations, which will allow us to 
obtain, in this simple case, the well known matrix representation of the generators of 
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the su(2) Lie algebra, in a way that will parallel the approach we follow later for the 
symplectic case. In 0 3 we introduce the generators of sp(4, R )  in vector form with 
spherical rather than Cartesian components, discuss their commutation relations and 
then construct the states in the enveloping algebra that correspond to the irreps of the 
positive discrete series. In  Q 4 we introduce the Dyson boson realisation (Castafios er 
a1 1985a, b, 1986) for the generators, which allows us to apply them to the basis by 
simple differentiation and  thus determine the matrix representation of the generators 
for a given irrep of sp(4, R ) .  In 0 5 we note that, as our basis is not orthonormal, we 
require the overlap of its states, which can be obtained with the help of the coherent 
states associated with the problem. We furthermore indicate that the combination of 
the matrix representation discussed above and the overlaps determined in this section 
allow us to obtain the matrix elements of operator functions of the generators between 
the bras and  kets that are part of the basis associated with a definite irrep of sp(4, R ) .  
In 0 6 we discuss the Casimir operators of the different subalgebras of sp(4, R )  that 
are of physical interest and  obtain their matrix representation, which allows us to 
determine the eigenvalues of any Hamiltonian given by a linear combination of these 
Casimir operators as well as of other elements in the enveloping algebra of sp(4, R ) .  
Finally in the concluding section we indicate how the preceding analysis can be 
generalised to sp(2d, R ) ,  where d is any integer, and  its relevance for collective motions 
in nuclei which correspond to d = 3. 

2. Applications to su(2) 

Before proceeding with the main objective of this paper, we shall illustrate our 
procedures in the simple case of su(2) where, in particular, we shall show how the use 
of coherent states and of the boson realisation of this algebra allow us to implement 
our program. 

We designate the generators of su(2) by the operators 

1 1 
S,=--(S,+iS,) so = s, S-,=-(Sx-iS,.) (2.1) a a 

satisfying the commutation relations 

[So, S*,l= *s*1 [S-I 9 SI1 = so. (2.2) 
In the usual basis, to be denoted by [ sa ) ,  the matrix representation of these generators 
has the well known form 

(sa'Is*IIsa) = F( 1 / J2 ) [ ( s  a) ( s  * a+ l)]1'2&,,u*l (2.3a) 

( S c T ' j S 0 ~ S ~ )  = (+sv.,u. (2.36) 

We also have the possibility of introducing the basis 

jsa) = (sI)5++"js, -s) (2.4) 
where Is, -s) is the lowest weight state 

S-JS, -s) = 0 sols, -s) = --sIs, -s). (2.5a, b )  

Applying then the generators Sil,  So to the round kets of (2.4) we obtain 

S,lsa) = s;+v+IJs, -s)= 1sa-t I )  (2.6a) 
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So!sa )  = [ S o ,  S;+"]js, -s)+ S;+frS"!s, -s) = ujsu) (2.6b) 
s t u - 1  

S-, lsu)= 2 Sl[S-,, Sl]S;+u-r-IIS,  -s)= - ; ( s + u ) ( s - u + l ) l s , u - ' )  ( 2 . 6 ~ )  
r = O  

thus obtaining a different matrix representation l l ~ J l ~ , v / l  of S,, q = 1, 0, -1, through 
the relation 

SqISU) = 1 jSU')9.y,.,, (2.7) 
c, 

where the explicit form of 9J2$v; u', u = s, s - 1 , .  . . , -s, q = 1, 0, - 1, is obtained from 
(2.6). It is easy to check with the help of (2.6) that the Casimir operator 

S ' = - S , S _ , - S _ , S , + S ~  (2.8) 

when applied to the state (su) gives 

S2/su) = s( s + 1)lsu) (2.9) 

as it should. 
The basis (2.4) is a very simple one and can be generalised immediately to some 

of the irreps of other groups, but it has the disadvantage that the overlap of its states 
(su' 1 su) (2.10) 

while zero for u'# u, as U, u' are eigenvalues of the Hermitian operator So, is not one 
for U' = U. The value of ( S(T 1 s a )  can be easily obtained from the definition (2.4) and 
the commutation relations (2.2), but we prefer to use coherent states of su(2) for this 
purpose, which will provide a technique to be used in the overlap of states associated 
with irreps of symplectic algebras. 

Let us define the coherent states (Kramer and Saracen0 1981) 

I Y )  = exp(pSl)ls, -s) (y ' l=  (s, - S I  exp(-y'S-,) (2.11a, b) 

where y ,  y '  are complex numbers and jj is the conjugate of y.  Their overlap is then 
given by 

(y'Iy)= (s, --SI exP(-y'S-l) exp(jS,)ls, -s) 
S 

u,u'= ~ s 
= [(S+u)!(S+u')!]-'~S+uy'-'+u'(s, -SI(-S-l)S+~'(S,)S+u~s, -s) (2.12) 

and thus, if we have an independent way of obtaining (y'l y )  as a function of y', 7, we 
can obtain, from its development in series, the overlap (2.10). 

As exp(-y'S-,)exp(jS,)  is a finite 4 2 )  transformation, we can express it in a 
'time ordered' fashion, i.e. 

(2.13) 
where to find a, b, c it is sufficient to express, on both sides of (2.13), the operators S, 
in terms of Pauli matrices, i.e. 

exp(-y'S-,) exp(jS,)  = exp(aS,) exp(bSo) exp(cS-,) 

S- --( 1 0 0  ) (2.14) 
' -a  1 0 '  

We then have that 

Y" 1 + (Y"2 
exp(-y'S-,) exp(pS,) = 

(2.15) 
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while 

From this expression and (2.12) we than conclude that the overlap becomes 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

As a final point concerning su(2) we consider its realisation in terms of creation a 
and annihilation 6 operators satisfying the commutation rule 

[ G ,  a ]  = 1. (2.20) 

We easily check with the help of (2.20) that (Kramer and Saracen0 1981) 

s, = - a ( a 6  -2s )  

So= a6 - - s  (2.216) 

(2.21 a 

s- I -  - - I -  za (2.21c) 

satisfy the commutation rules (2.21, and besides that, if we define the state 

1 
I s u }  = ~ a'-'/O} 610) = 0 

( s - U ) !  
(2.22a, b)  

the application of the S,, q = 1,0 ,  -1, of (2.21) to it gives precisely the expressions in 
(2.6). In  this boson realisation the generators (2.21) can be interpreted as differential 
operators from the fact that 6 = a / d a  will satisfy (2.20). Thus the application of S, to 
the states (2.22) is simplified, as i t  only implies a differentiation. 

We now pass to sp(4, R )  where several of the previous considerations will be applied. 

3. Generators of sp(4, R )  and basis for the irreps in the enveloping algebra 

I n  previous papers we gave the generators of sp(4,  R )  in vector form with Cartesian 
components. In  this paper we prefer to express the vectors in spherical components 
q = 1, 0, -1, as in (2.1 1. We thus have the ten generators as (Castaiios et a1 1985a, b, 
1986) 

-1; B,, J , ,  B, (3.1) 
and from their commutation relations in Cartesian components we obtain 

[A; B,] = B,, [ , t i  By] = -B, [ . + , J , ] = O  [ B , , B ; ] = [ B , , B , ] = O  
( 3 . 2 ~ )  
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while the rest of the commutation relations are given in the following table: 

~~~ ~~ 

Bl 0 2 J1 -2( X - J o )  0 - B1 - BO 
BO -2J, 2d4' 2J_1 B ,  0 - B - ,  
B-  1 -2 (K+ J o )  -2J-1 0 Bo B- 1 0 

- B :  - B; 0 - J1 - Jo J1 0 
Jo B ;  0 -BT,  J, 
J- 1 BA BL, 0 JO J- 1 0 

0 -J_1 

517 

(3.26) 

where the term appearing in the body of the table is the commutator of the one 
appearing on the right-hand side in the corresponding row and the one above in the 
corresponding column, e.g. [ B - ,  , BA] = -2J-, . 

Note that the J,, q = 1,0,  -1, are the generators in spherical components of the 
su(2) subalgebra of sp (4, R )  with the standard angular momentum properties while, 
with respect to J,, the B i ,  B,, ,  behave as three-dimensional vectors. 

The set of generators (3.1) can be divided into three subsets of raising, weight and 
lowering type, which are separated by semicolons (Castafios er a1 1985a, b, 1986): 

B i ,  J , ;  A", Jo; B,, J-, . (3.3) 
The lowest weight state, which we designate by Iw, s, -s) can now be characterised by 

BJw,  S, - s ) = O  

J J w ,  s, -s) = 0 

Aqw, s, -s) = wlw, s, -s) 

q = 1,0, - 1  

Jolw, S, - s ) =  - - s I w ,  S, - 3 )  

(3.4a) 

(3.46) 

(3.4c) 

(3.4d) 
where w, s are integer or semi-integer numbers. This state is t..e lowest weight one of 
the irrep [ w - s, w + s] in the discrete positive series. Clearly 

J 2 ~ ~ , ~ , - ~ ) = [ - 2 J l J _ l + J ~ ( J ~ - 1 ) ] ~ ~ , ~ , - ~ ) = ~ ( ~ + 1 ) ~ ~ , ~ ,  - s )  (3.5) 

and this is the reason for the notation in the ket as it is characterised by the eigenvalues 

The analysis of Gruber and Klymik (1984), as well as a previous discussion 
(Castafios et a1 1986), indicates that the full basis for the irrep [ w - s, w + s] of sp(4, R )  
is given by applying powers of the raising generators B : ,  BA, BYl, J, , i.e. elements of 
the enveloping algebra, to the lowest weight state Iw, s, -s). Thus we can characterise 
this basis by 

(3.6) 

where the choice of exponents guarantees, from the commutation relation (3.2), that 
the ket (3.6) is an eigenstate of the weight generators N, Jo,  i.e. 

J O I N  M,  P, a)=  MIN M ,  P, 4. (3.7a, b )  

Note that kets depend on (w, s) but as the irrep of sp(4, R )  is kept fixed we do  not 
include it. 

W ,  S ( S +  l ) ,  --s of Ar, J 2 ,  Jo .  

t ( N +  M - @  - ~ ) / 2 (  BA)+ ( B I  ,) ( N - M - + IN M, P, 4 = ( B , )  @ ~ " z ( J I ) c + u ~ ~ ,  S, - s )  

J + p I N ~ , P u , 4 = ( N + w ) l N ,  M P , d  
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By applying the generators (3.1) of sp(4, R )  to the states (3.6), with the help of the 
commutation relation (3.2), we can obtain, in analogy with the analysis (2.6) for su(2), 
the matrix representation of these generators for the irrep [w -s, w + s ]  of sp(4, R ) .  
The use of the commutation relation is rather cumbersome and thus in the next section 
we shall discuss a Dyson-type boson realisation of sp(4, R )  that will allow us to obtain 
this matrix representation by simple differentiation, in analogy with the one carried 
out explicitly for su(2) at the end of B 2. 

4. The Dyson boson realisation and the matrix representation of the generators of 
SP(4, R )  

In previous papers (Castarios er a1 1985a, b, 1986) we have shown how the generators 
of sp(4, R )  can be expressed in terms of those of the direct sum of W(3) and su(2), 
where the former is a Weyl Lie algebra in three dimensions whose generators are the 
creation P,  and annihilation operators p q  = (-l),&,, q = 1,0, -1, satisfying 

[Pq, P, , l=  [ P q ,  P q . 1  = 0 (4.la, 6) 

while the latter has as generators the spin operators S, satisfying 

[PY, P,,l = q, 

[So, S*,l= * S * ,  [S-I 1 SI1 = So. (4.lc, d )  

Furthermore W(3) and su(2) are independent so that 

[Pq, Sql = [P, ,  Sq,l= 0. (4 . le)  

Note that here we give all generators of W(3)0su(2)  in spherical rather than Cartesian 
components and use the notation P,, p,, S,; q = 1,0, -1, instead of the p:, P I ,  S,; 
i = 1,2,3,  of Castafios et a1 (1985a). 

In vector notation the realisation of the ten generators (3.1) of sp(4, R )  in terms 
of p, p, S and the eigenvalue w of ( 3 . 4 ~ )  is given by Castarios et a1 (1985a): 

B + = p  J = L + S  K = '31 + w (4.2a, 6, c )  

B =  - p ( p .  p ) + ( 2 ' 3 1 + 2 w ) p - 2 i ( p x ~ )  (4.2d) 

where 

L = -i(p x 6) s>=p.p.  (4.3a, 6)  
We can immediately check from (4.1) that N, E ; ,  J,, E, of (4.2) satisfy the commutation 
rules (3.2). Note though that from the Hermitian properties 

(B')' = B J ' = J  N + = N  (4.4a, 6, c )  

of the generators of sp(4, R )  we conclude 

p ' z p  (4.5) 
and thus we are dealing with what is known as a Dyson-type boson realisation of 
sp(4, R )  instead of a Holstein-Primakoff one. 

We can furthermore express the S,, q = 1, 0, -1, in the boson realisation (2.21), 
which is again of the Dyson type, and thus we see that we can write JV, E:, J,, B, in 
terms of the creation operators P,, a and the annihilation ones pq ,  6 which, besides 
the commutation rules (4.la, 6), satisfy also 

(4.6a, b )  [Pq,  a1 = [F, ,  a1 = [ P q ,  G I  = [P,,  61 = 0, [ti, a] = 1. 
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We now define the boson states 

where the boson vacuum IO} has the property 

Pql0) = 0 q = l,O, -1 610) = 0. (4.8a, b )  

From (2.22) we then immediately conclude that applying the operators (4.2), in which 
S, is replaced by (2.211, to the states (4.7) gives the same result as applying the 
generators (3.1) of sp(4, R )  directly to the states (3.6) in the enveloping algebra and 
using the commutation relations to obtain the matrix representation of the generators. 

The fact that pq,  a ;  pq ,  6 satisfy the commutation relations (4.la, b )  and (4.6~1, b )  
make it much easier to apply (4.2), in which we replace S, by (2.21), to the states 
(4.7), as we can interpret 

p 4  = ala@, q = 1,0, -1 G = a / a a .  (4.9~1, b )  

Thus the expressions (4.2) for the generators of sp(4, R )  become simple multiplicative 
or differential operators in the variables p,, (Y that we have to apply to the products 
of powers of P I ,  pol a appearing in (4.7), from which we obtain immediately 
the matrix representation of the generators of sp(4, R). Translating these results to N, 
Bi, J,, B, of (3.1), being applied to the states (3.6), we then obtain 

" ~ " l N , M , p , a ) = ( N + W ) / N ,  M , p L , 4  Jol N, M, p, a)  = MI N, M, p, a)  
(4.10a, b) 

as also follows from (3.7), plus the following expressions: 

Jl(N, M,p . ,g )= -p IN,  M + l , p - l , a ) + / N ,  M + l , p , ~ + l )  

-;(N - M + ~ - ~ ) ~ N ,  M +  1, + 1, a)  (4 .10~)  

)-,IN, M, p, a) = ;( N + M - p - a)ll N, M - 1, p + 1, a) + pi N, M - 1, p - 1, V) 

- + ( s +  a ) ( s  - U +  1)IN, M - 1, p, U - 1) 

B W ,  M, p, a)  = IN + 1, M + 1, p, ff) 

Bil N, M, p, a )  = I N + 1 1 M ,  p + 1 7 a)  

B- IIN, M, p, 4 = IN + 1, M - 1, p, (7) 

(4.10d ) 

(4.10e) 

(4.lO.f 1 

(4.1 Og ) 

B,IN, M, p, a)=  - f ( N + 2 w -  M - v + ~  - 2 ) ( N -  M + a - p ) l N - l ,  M +  l , p ,  a) 

- p ( p - l ) l N - l ,  M + 1 ,  p - 2 ,  (+)+2pIN-  1, M + 1 ,  p - 1, V S  1) 
(4.10h) 

B,,I N, M, p, V )  = ;( N + M - U - I-L ) (  N - M + a - p  ) I  N - 1, M, CL + 1, a )  

+ p ( Z N + 2 w - p - l , ) l N - l ,  M , p - l , ~ )  

- (  N +  M - a - p ) I N  -1, M, p, U +  1) 

- $ ( s + u ) ( s  -a+ 1)( N - M + a - p ) I N  - 1, M ,  p, a -  1) 

B-IIN, M,p,  v ) = - I ( N + ~ w +  M + u + p - 2 ) ( N +  M - p  - u ) ~ N  -1 ,  M - 1 ,  p, a) 

(4.10i) 

- p ( p  - 1 ) / N  - 1, M - 1, p -2, a)  

+ p ( S + t ) ( S - V + l ) I N  - 1 ,  M - 1 , p  -1, V -  1). (4.10j) 
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If we express generically by X one of the generators of sp(4, R )  we will have 
XIN, M, P, U)= IN', M ' ,  U O g ~ X N , ~ , f i ' u ' , ~ ~ f i u  (4.1 1) 

N ' M ' w ' u '  

where 
X II 92 x N , M , , ~ u ~ ,  N,wf iu  )I (4.12) 

is the matrix representation of X in the enveloping algebra basis (3.6), whose elements 
can be obtained explicitly by comparing (4.1 1) with (4.10). 

The basis (3.6) is very simple if we wish to determine the matrix representation, 
but unfortunately it is not an orthonormal one. In the next section we shall use coherent 
states of sp(4, R )  to find the overlaps of the kets (3.6) and thus complete the procedure 
for finding representations also in orthonormal basis, for which these overlaps need 
to be diagonalised. 

5. Coherent states and the determination of overlaps 

Our objective now is to determine the overlaps of the states (3.6) in which for 
compactness we write 

f ( ~ +  M - p  - U ) =  A $ ( N - M - p + + a ) ~ v .  (5.1) 
We thus have 

(5.2) 
where BY = ( - l ) q B - q ,  q = 1,0, -1, J ' =  -LI. Note that A ' ,  Y' in (5.2) are given by the 
relations (5.1) in which we replace p, U by p ' ,  U' but keep the same N, M as they 
are eigenvalues of the Hermitian operators h^- w, J o .  

We now carry out our analysis in exactly the same fashion as in the discussion of 
the overlaps for the states /su) of su(2), given between equations (2.11) and (2.19) of 
0 2. We introduce the coherent states of sp(4, R )  by the definitions 

lyz) = exp(tYB:) exp(jV,)lw, s, -s) 
( y ' z ' l =  (w, s, -slexp(y'J ') exp(zkBY) 

(5.3u) 
(5.36) 

where y ' ,  y are complex numbers and z&, zq the spherical components of complex 
vectors. The bar above the letters means complex conjugate and the repeated index 
implies sums over its values q = 1, 0, -1, while the raising or lowering of the indices 
follows the rules indicated after (5.2). 

From ( 3 . 2 ~ )  the B:, Bb, Bl, commute among themselves as also happens for B', 
Bo, B-'. Thus taking the scalar product of the coherent states in (5.3) we can write 

(z',)" j j%+''  ( 2 1 ) A  ( 2 0 ) ~  (2-1)" 
x----- 

v'! ( s + u ) !  A !  p !  v !  

x ( W, S, -SI( J B I)'"( Bo)@'( B-') "'( B:)" ( BA)w 

(5.4) 
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If we have an independent way of determining ( y ’ z ’ l y z )  we see that by expanding 
it in terms of powers of y ’ ,  z:, j ,  i4, q = 1, 0, -1, we can immediately obtain the 
overlaps (5.2). 

Fortunately the explicit expression of (y’z‘ l  y z )  was obtained by the authors in 
collaboration with Kramer (Castafios et a1 1986). They used the defining representation 
of sp(4, R )  in terms of 4 x 4  matrices (Gilmore 1974), in the same way as the Pauli 
spin matrices were used for su(2) in equations (2.14)-(2.18), i.e. to express the exponen- 
tials of the generators appearing in ( y ‘ r ’ l y z )  in a ‘time ordered’ fashion, first exponen- 
tials in B:, then in J4 and finally in BY. From the definition (3.4) of the lowest weight 
state I w, s, -s) we have that 

exp(c ,~~) lw ,  s, -s)= Iw, s, -s) 

and thus we obtain 

(w, s, -s)exp(a4B:) = (w, s, - S I  (5.5a, b )  

(y‘r’lyz) = (w, s, -s)exp( b4Jq) exp(dX)I w, s, -s) (5.6) 

where a9, b9, c,, d are definite functions of y ’ ,  J ,  z;, f9, in the same way as, for the 
case of su(2), the a, b, c appearing in (2.16) were definite functions of y’, J of (2.15). 

The expression (5.6) is a finite representation of a group element of U(2) charac- 
terised by the parameters bq, d and whose generators are J9, N. This representation 
has been evaluated by Louck (1970) and using it in our paper with Kramer we arrived 
at the expression (Castaiios et a1 1986) 

(5.7) (y’z’ lyz)  = [A(JZ; y‘ t ’ ) ]*’ [A(Z,  z ’ ) ] - ( ~ * ~ )  

where 

4 = h + ky’+ lJ+ my’? 

with 

(5 .8b)  

h = 1 -2z:f’ - z p  (5.90) 

(5.96) 

(5.9c) 

k = -zbi ’  - z [ , f o  

-zjzo-zbz-l 

m = f( 1 - 22 L 2-I - z ~ z ” ) .  (5.9d) 

We now have to expand ( y ’ z ’ l y z )  in terms of powers of y’, z:,  j ,  f Y  and compare 
with (5.4) to obtain the explicit expression for the overlap (5.2). The detailed analysis 
is given in the appendix and we just state here the result 

(5.10) 



522 0 Castan'os and M Moshinsky 

where ( 1 ) denotes the transformation brackets between the spherical harmonic 
oscillator states and the cylindrical ones (Chac6n and de Llano 1963) given in (A9). 
The coefficient B is 

, ( y + 2 ~ + 2 ~ - @ - 3 ) ! !  ( y + 2 ~ + 2 ~ + p - 2 ) ! !  
( 2  w + 2s - 2 )  !! (2w  +2s  - 3 ) ! !  & A Y ,  P, a, w, s) = 

x { [ ( y - T + ( Y ) / 2 ]  ! T !  [ ( 7  - 7 - ( Y ) / 2 ]  ! [ ( y - 7' + ( Y ) / 2 ] !  T ' !  

x [ ( y - T' - a ) / 2 ]  ! } - I / *  (5.11a) 

while C corresponds to (AS) with the arguments indicated: 

c [ ' - ( ')' - T + (Y ) / 2 ,  p' - 7, V' - ( y - 7 - U)/ 2, U';  

A - ( y  - 7'- C Y ) / &  p - T', V-( y - T'+ (Y)/2,  U ]  

(2S) ! (3S  + U - r -  A ' -  V + y - ( T +  T' ) /2+ C Y ) !  h ' + @ ' + v ' - y  h ' f v - y + ( r + r ' ) / 2 - a - s - o  2 
r ( 2 S - A f - p ' -  V'+ y ) ! ( p ' +  VI- V-(T'+T7)/2+ (Y + S + U - r ) !  

x 1 [ (s+  v'- v - A ' + ( 3 ( ~ ) / 2 +  y / 2 -  T ' / ~ - u ' -  d ) !  L 
X ( A ' +  v - v'+ S + U -  r - ( 3 ~ ) / 2 -  y / 2 +  7 ' /2+ d ) !  

x ( V I -  ( y -  7 -  a ) / 2  - d ) ! ( 2 s +  (++U' - r - v'+ ( y  - T- a ) / 2 +  d ) !  

X ( r  - s - y - d ) ! ( d ) ! (  V -  v'+ (7 ' -  T ) / 2  - (Y + d ) !  

X ( r  - s - a+ v'- v + ( T  - ' ~ ' ) / 2 +  Q - d ) ! ] - '  (5.116) 

From (5.10) and the relation ( 5 . 1 )  between A, v and N, M we then determine the 
overlap 

( N ,  M,  p' ,  U'I N ,  M, p, c) (5.12) 

and thus if we have some function X of the generators of sp(4, R )  we can write 
from (4.11) 

(5.13) 

We have thus obtained the matrix element of the operator X between bras and kets 
that are part of the non-orthonormal basis associated with a definite irrep of sp(4, R ) .  

By determining the orthogonal transformations that diagonalise the matrices whose 
elements are given by (5.12) with fixed N, M and also using the eigenvalues of these 
matrices, we can obtain the linear combinations of states (3.6) that are orthonormal, i.e. 

(5.14) 

with 

( N ,  M ,  K'I N ,  M, K )  = S K t K .  (5.15) 
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From (5.14) we then see that the matrix elements of the operator X in this orthornormal 
basis are given by 

x ( N ' ,  M ' ,  P', d X l N  M ,  I*, a ) ) ]  (5.16) 

with the matrix element of the right-hand side being given by (5.13). 
In the next section we discuss some applications of these results to the matrix 

representation of Casimir operators of subalgebras of sp(4, R )  and of Hamiltonians 
that can be formed from them and other elements in the enveloping algebra of sp(4, R ) .  

6. Casimir operators of subgroups of sp(4, R )  and their matrix representation 

We start by looking at the commutation rules (3 .2)  for the generators of sp(4, R )  and 
consider subsets of these generators that close under commutation, i.e. correspond to 
subalgebras which we identify, and determine the corresponding Casimir operators. 

The first and obvious subalgebra is J4, 9 = 1,0, -1, which clearly is of the s u ( 2 )  
type and its Casimir operator is 

J 2  = -2J_ ,J1  + J o ( J o +  1 ) .  

We then note from (3 .2b )  that another subalgebra is given by 

1, = -( 1 / 4 2 )  B,  I ,  = "V I-, = ( 1 1 4 2 )  Bo 

where we have 

[A; B;]  = B,: 1 4  Bo1 = -Bo [ B o ,  B,3 = 2 K  

which identifies i t  as an  sp(2, R )  subalgebra whose Casimir operator is then 

I ? =  1 , ( 1 0 - 1 ) + 2 1 1 1 ~ 1 ~ ~ ~ ~ ( ~ ~ " - ~ ) - ~ ~ ~ , .  

Again from ( 3 . 2 6 )  we note that 

1' 1 - 4 ;  - 1 1; = f(.l'+ J0)lLI = f B - ,  

close under commutation as 

[,C"+JO, B i ] = 2 B ;  [ ~ 1 . ' + J o ,  B - , ] = - 2 B - ,  

[ B - ,  , B : ]  = -2(.h"+ J o ) .  

I t  also corresponds to an sp(2, R )  subalgebra and thus its Casimir operator is 

I '2 = a( ,CA + Jo) (dC" + Jo - 2 )  + B B- 1 . (6 .7)  

Finally we note that 

(6.8) 1: -1 l ,"= t ("h ' -J")  I -2B1 1 ' I - L  + 
I - * B - ,  

also close under commutation and the Casimir operator is 

I"' = :(A" - J ~ ) ( J V " - J "  - 2 )  + jBLl B 1 .  (6.9) 
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As we have already obtained, in (4.10), the effect of the operators N, B:, J,, B, 
on the states IN, M, p, a) of (3.6), we can also determine the matrix representation of 
the Casimir operators of this section, which are given below: 

J*(N,  M, p, U )  = [ M (  M + 1 )  + 2p(  N - p + 1 )  

+ ( N  - M + a - p ) + ( s + (T + 1 )( s - ~ ) ] 1  N, M, p, a) 

+ f (  N + M - v - p ) (  N - M + a - p ) I N ,  M,  p + 2, a) 

+2p(IL-1)/N,M,IL-2,a)-22/LIN, M , p - 1 , ~ + 1 )  

+ f (  N - M + (T - p ) (  s + U ) (  (+ - s - 1)IN, M, p + 1,  (T - 1 )  

+ p ( s + a ) ( a - s - l ) I N ,  M, p-1, U -  1 )  

- ( N + M - - CL) \  N, M, CL + 1 ,  + 1) 

Z’IN, M, p, a) = ( N  + w - p ) (  N + w - p - 1)1 N, M, p, U )  

+ ( N + M - p - (.)I N, M, p + 1 ,  (T + 1 )  

(6.10) 

- f( N + M - p - U ) (  N - M - p + U ) [  N, M ,  p + 2 ,  a) 

+f ( s  + U ) ( S  -a+ 1 ) (  N - M - p + a) lN,  M,  p + 1,  (T - 1)  (6.11) 

I‘*/  N, M, p, U )  = $( w + L+ + p ) (  w + (+ + p - 2)1 N, M ,  p, a) 

- i p  ( p  - 1)1 N, M, p - 2 ,  a) + fp  ( s + a)( s - D + 1)1 N, M ,  p - 1 ,  U - 1)  
(6.12) 

Z”*(N, M , p , a ) = a ( ~ - a + p ) ( ~ - a + + - 2 ) 1 N ,  M , p , v )  

- f l . ( p - - 1 ) 1 ~ , M , ~ - - , ~ ) + c L I ~ , ~ , c ( - 1 , ~ + 1 ) .  (6.13) 

In  fact we can determine the matrix representation of any Hamiltonian which is a 
linear combination of these Casimir operators or any arbitrary function of the generators 
of sp(4, R ) .  

A check on the above matrix elements can be obtained from the fact that the second 
Casimir operator of sp(4, R )  has the form (Castafios et a1 1985a) 

G2=.h‘(J\r-3)+J2-Bt * B 

=(J2+Z2+2Z”+2Z”2} 

+ (,I.” - $( d I r  + Jo)(  x + Jo - 2 )  - f (  K - Jo)(  ”ha - Jo - 2 ) }  (6.14) 

where the right-hand side is obtained from (6.4), (6.7) and (6.9). The eigenvalue of 
G2 can be determined by applying the operator to the lowest weight state I w ,  s, -s) 
that satisfies B,/w, s, - - s ) = O .  Thus we have 

(6.15) Gzl N, M, p, = [ W (  W - 3 )  + s( s + 1) I /  N, M, p, a) 

and from (6.14) we see that 

{J2+12+21’2+21”2}j/N, M , p , a )  

= [ w (  w -3)  + ~ ( s  + 1 )  + ( N  + w ) ’ +  M2]IN,  M,  p, v) 

which also follows from (6.10)-(6.13). 

(6.16) 
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7. Conclusion 

The analysis carried out in this paper concerns the states that form a basis for irreps 
in the positive discrete series of sp(4, R ) ,  and on the determination of the overlaps of 
these states and the matrix representation of the generators with respect to this basis. 
The title of this paper, however, speaks of symplectic algebras in general and the 
question is whether the procedures presented here can be applied to sp(2d, R )  where 
d is any integer. 

The answer is yes, as we can divide the generators of sp(2d, R )  into three sets of 
raising, weight and lowering type as in (3.3), define the lowest weight state as in (3.4) 
and our full basis by applying the raising generators to the lowest weight state as in 
(3.6). It is also possible to find a Dyson-type boson realisation for the sp(2d)  generators 
(Moshinsky 1984a) corresponding to (4.2) which will now contain generators of su(d)  
as well, like (4.2) contained the S,  of su(2). In  turn these su (d )  generators have a 
Dyson boson realisation as in (2.21) for su(2). We can then express our basis purely 
in terms of creation operators acting on a vacuum state and the generators as differential 
operators with respect to the creation operators as indicated in (4.9), thus allowing us 
to determine the matrix representation as in (4.10). Furthermore one can define 
coherent states for sp(2d, R )  (Quesne 1986) and from them derive the overlaps of the 
states of our basis in analogy with what was done in § 5. 

We plan to carry out this programme for sp(6, R )  in a forthceming publication. 

Appendix. Determination of the overlap (5.2) 

From the discussion in § 5 we see that to get the overlap (5.2) we only need to expand 

( A I )  "il 2r ( A  1 - n - 
in powers of y ' ,  j and of the components of the vectors z', i: We start with AZC of 
(5.8b) and, developing first in powers of y ' ,  j ,  we have 

where 

F;,,,(h, k, 5 111) = C (2s)! 
, (2s - r)!  ( r  - s -a)! ( r  - s - U ' ) !  (2s + U  + a'-  r ) !  

('43) 
( h  ) 2 s - r (  k )  r - s - u (  / ) r -  v-u'( ) 2 s + u + o ' - r  

As h, k, I ,  m are given in turn by (5.9) we expand them by the binomial theorem in 
powers of zl ,  z;, zkl ,  Z', Yo ,  Z- '  and thus finally get 
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and in which 

D, = [ ( s +  Y’- 1 -A’- a’- d)! (A’+ s + a’-  r +  F - F’+ d )  
d 

x ( C‘ - d )  ! ( 2 s  + (T + U ’  - r - Y’ + d ) ! 
x ( r  - s - a  - d)! d !  ( 1  - Y‘+ d)! ( r  - s -a+ Y’+ 6 - d ) ! ] - ’ .  

On the other hand, we showed in equation (A7) of Castar’ios et a1 (1986) that 

( A6 

(A7 
( y + 2w + 2s  - p - 3)!! ( y + 2w + 2s + p - 2 ) ! !  

Pypn (z’) PYP,  ( z )  A - - ( w + s ’ =  rPa c 
( 2 w  + 2 ~  - 2 ) ! ! ( 2 ~  + 2 s  -3)!! 

where Pyp,(z) are the polynomials 

and the bracket has the form (Chac6n and de Llano 1963) 

(y7a l,,pa) = (-l)(Y-P’/22(Y-T’/z-D { ( 2 P + l ) ( p - a ) ! T !  

x [ ( y + a - T ) / 2 ]  !}”2{ ( y + p + 1) ! ! ( y - p ) ! ! ( p  + a ) !  [ ( y - a - 7)/2]!}-1’2 

P ( - 1 ) ’ [ (  y - p ) / 2  + k ]  ! ( 2 p  - 2 k )  ! 
x z ~ o * ! ( p  - k ) ! ( p  - 2 k - ( v ) ! [ ( a + ~ - p ) / 2 + k ] !  

From (A4) and (A7) we can immediately obtain the expansion of ~ t l ~ ’ A “ ~ + ’ ’  in 
powers of y’, j and the components of z’, Z. The coefficients of these products of 
powers give the overlap as indicated in (5 .10) .  
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